M3 Wireless Tank Level Sensor
Using Digi Gateway & Massa Python Drivers
System Integrator’s Guide
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Overview and General Operation</td>
<td>2</td>
</tr>
<tr>
<td>2.0 Gateway Basic Settings</td>
<td>2</td>
</tr>
<tr>
<td>3.0 Operating Modes for Gateway and Sensor</td>
<td>5</td>
</tr>
<tr>
<td>- Configuring Sensor</td>
<td>5</td>
</tr>
<tr>
<td>- Normal Operation</td>
<td>15</td>
</tr>
<tr>
<td>- Diagnostic Mode – Waveforms</td>
<td>16</td>
</tr>
<tr>
<td>- Firmware Update</td>
<td>17</td>
</tr>
<tr>
<td>- M3 Application Software enable (X4 Gateway only)</td>
<td>17</td>
</tr>
<tr>
<td>- Sensor XBee Firmware Update</td>
<td>18</td>
</tr>
<tr>
<td>4.0 Application Setup Example</td>
<td>20</td>
</tr>
<tr>
<td>Appendix A Miscellaneous Information</td>
<td>23</td>
</tr>
<tr>
<td>- Battery Life and Suggested Replacement Voltage</td>
<td></td>
</tr>
<tr>
<td>- Diagnostic Mode – Sensor Waveforms</td>
<td></td>
</tr>
<tr>
<td>- LED Behavior</td>
<td></td>
</tr>
<tr>
<td>- Rebooting Sensor Manually</td>
<td></td>
</tr>
<tr>
<td>- Firmware Releases</td>
<td></td>
</tr>
<tr>
<td>Appendix B dia.yml format</td>
<td>25</td>
</tr>
<tr>
<td>Appendix C Digi Gateway & Massa M3 Sensor Placement Strategies</td>
<td>26</td>
</tr>
<tr>
<td>(including the use of Digi’s XBee Wall Routers)</td>
<td></td>
</tr>
<tr>
<td>Appendix D Fresnel Zone</td>
<td>29</td>
</tr>
<tr>
<td>Appendix E Outgoing Auto-Message Message Format</td>
<td>30</td>
</tr>
<tr>
<td>Appendix F M3 Application Software – Understanding an Ultrasonic Waveform</td>
<td>31</td>
</tr>
<tr>
<td>Appendix G Firmware Conversion Procedure and</td>
<td>32</td>
</tr>
<tr>
<td>Checklist for Reliable Sensor and Gateway Operation</td>
<td></td>
</tr>
<tr>
<td>Appendix H Custom Sensitivity Settings When Mounting in a Standpipe</td>
<td>33</td>
</tr>
<tr>
<td>Appendix I Troubleshooting Guide</td>
<td>35</td>
</tr>
</tbody>
</table>

North America
The M3 Sensor complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (i.) this device may not cause harmful interference and (ii.) this device must accept any interference received, including interference that may cause undesired operation. Contains FCC ID: MCQ-XBEEPRO2, IC: 1846A-XBEEPRO2

Europe

Manufactured under ISO 9001:2008 registered standards

If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Massa Products Corporation provides this document “as is,” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of fitness or merchantability for a particular purpose. Massa Products Corporation may make improvements and/or changes in this manual at any time. This product could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes may be incorporated in new editions of the publication.
1.0 Overview and General Operation

The Massa Model M3 or M3is Wireless Ultrasonic Sensors used in combination with a Digi ConnectPort X4 Gateway (or X2) is a solution to non-contact wireless tank level monitoring. The sensor is housed in an IP67 rated 2” NPT housing with several models available to provide different maximum sensing ranges and including intrinsic safe versions. The basic operating mode is for sensor to obtain range (to liquid level surface), temperature and other information and pack it in a status message, then send this message (upon waking up) automatically to the gateway. The gateway will then push the message to the iDigi Cloud server. This document will cover: a) Digi Gateway (X2 or X4) using its Ethernet port, b) adjusting the Digi gateway’s settings, c) configuring the Massa’s M3 Python code for your application with details of each setting, d) M3 Sensor basic operating modes, e) application example, f) placement strategies and g) troubleshooting guide. This document is based on using the Massa’s M3 Python code, which can be obtained from Massa’s web site.

2.0 Gateway Basic Settings

The Digi International Gateway, models X2 or X4, needs to be set up to be used with the M3 Sensor. This includes configuring for an Ethernet or WiFi connection, configuring gateway’s XBee settings, loading python programs, and configuring server connection to receive the data. Most of the information can be found on Digi’s web site (digi.com) on how to set up the gateway’s Ethernet connection and server connection. The settings listed in this document are recommended for most applications.

Basic Configuration Checklist

- Network Settings
- Time source
- XBee SP SN settings
- XBee PAN ID
- Server Connection (not necessary for initial evaluation)

2.1 Network Settings

Gaining access to the gateway requires an Ethernet connection and the use of Digi’s Device Discovery application software. The gateway’s Ethernet IP Settings are configured from the factory to obtain an IP address automatically using DHCP. Contact your network administrator if you need support for this. Initially, you may plug the gateway directly into your PC Ethernet port with your PC’s Local Area Connection TCP/IP set to obtain an IP address automatically. Run the Device Discovery to find the gateway (see below). Double click the IP address found to get to the Digi Web UI (see lower figure).

![Device Discovery Interface](image1.png)

![Gateway Configuration](image2.png)
2.0 Gateway Basic Settings

2.2 Time Source
Initially you may set up the Time Source by manually entering the time which will be retained up to 10 days when powered off (model X4 gateways only). Go to the System Configuration – Date and Time Settings Web UI and initially, set the time manually. Next, in the Time Source Settings UI, you may select a time source such as my.idigi.com or other reliable time sources.

2.3 Gateway’s XBee Settings
The settings listed below are ones that should be adjusted from the factory default settings. The Web UI for these settings can be found at XBee Network, and then clicking on the gateway’s network or extended address. Select Advanced Settings to program these registers below.

- Extended PAN ID (ID): xxx
 Gateway XBee PAN ID = 0 will assign a random value and sensors must have PAN ID=0 to associate. If multiple gateways are placed in the vicinity of each other, then the user should assign unique non-zero identical PAN IDs for each application. See section 3.1.14 for more information.

- Scan Channels Scan Channels (SC): 0x1ffe
 The SC register from a factory shipped gateway is 0x3fff or 0x7fff. Sensors are programmed are defaulted to 0x1ffe. Set this SC register to 0x1ffe.

- Peripheral sleep count (SN): see below

- Cyclic sleep period (SP): 1000 (recommended)
 The SN and SP registers control the poll timeout for the gateway which holds the sensor in its child table. The formula is:
 \[\text{Poll Timeout} = 0.03 \times SN \times SP \text{ (sec)} \]
 For example, to retain the sensor for 24 hours (86,400 seconds) with a SP recommended setting of 1000: \(SN = 86,400 \div 30 \text{ seconds} = 2880 \). Every time the sensor wakes up from sleep and commissions to the gateway, it will reset its own poll timeout timer. A gateway will drop a sensor if it does not get a response from the sensor for the entire poll timeout period (for example a truck has blocked the RF signal). User may want to program this Poll Timeout setting to at least 4 times the sensor’s sleep timer setting (see Section 3.1.5). Other applications where there can be more than 10 sensors on a gateway (limit 10), the Poll Timeout can be set to intentionally drop sensors so others can join. Recommended setting for such an application is 1 minute. Note that sensors will be required to rejoin each time awake cycle, which will slightly use more battery power in this type of application.

Click the Apply button to accept all the settings.
2.0 Gateway Basic Settings

2.3 Gateway’s XBee Settings (continued from previous page)

2.4 Gateway’s Python Files

The files indicated here are required to set up and operate the M3 Sensors. They can be obtained from www.massa.com. The dia.yml file will need to be edited to configure the M3 Sensors to operate with your gateway. See Section 3.0 for more information.

The operating files require include:

a) python.zip
b) zigbee.py
c) dia.py
d) dia.zip
e) dia.yml (This is used to control the operating mode when gateway boots. See section 3.1 for more information)

To have the gateway start executing the DIA (device integration application) when it powers up or reboots, check the Enable box in the Auto-start Settings UI. See section 3 for creating additional auto-start command lines as an option.

Here is the setting for sending the M3 automated message to the iDigi Cloud server. Contact Digi International for support.
3.0 Operating Modes for Gateway and Sensor

There are several operating modes for the gateway using the Massa python driver. The primary function is listening for automated messages from M3 Sensors and sending its data to a cloud or local server. Secondary functions include programming sensor registers, programming XBee registers, obtaining sensor diagnostic data, communicating with the M3 Software application, reprogramming sensor firmware, and reprogramming the XBee radio.

Sensors from the factory have their PAN IDs set to zero which allows them to associate to any gateway when permissible (gateway won’t permit a sensor to attach if the gateway has reached its child table limit, for example). They are also programmed to stay awake when they find a gateway (indicated by Sensor LED blinking every 2 seconds). Note, if gateway is not powered or sensor is not able to attach to a gateway, then the sensor will search for gateway every 60 seconds and thus blink in this manner (when sensors that are not programmed for sleep).

3.1 Configuring Sensor Settings & Other Controls

The controls for the gateway operating mode are found in the dia.yml file which is processed by the Massa Python driver (m3_driver.py). This dia.yml can be set up to program sensor’s registers, program XBee’s registers, obtain diagnostic information, program the sensor’s application firmware, and program the XBee radio. After the dia.yml is processed when the gateway starts, it returns to a listening mode waiting for automated M3 messages from the sensors. The dia.yml also includes drivers to send this data to cloud or local servers (see Section 3.5). See the following pages for the definition of each setting. Shown below is an excerpt for the settings from a dia.yml [with default settings]:

```
- name: M3-150-3b4e or M3-150-Tank1
  driver: devices.vendors.massa.m3_driver:M3Driver

# Main dia related
extended_address: '00:13:a2:00:40:48:3b:4e!' # MAC Address of the M3 Sensor (must be lower case and followed by !)
xbee_device_manager: 'xbee_device_manager' # operating manager (required)

# Sensor settings
sleep_interval_sec: 0 # Deep Sleep Interval (seconds), limits: 0, 12 – 88474 sec (133120 max ver 32.x)
awake_time_sec: 31 # Awake Time (seconds), limits: 12 – 600 seconds, 20 sec min for most appl.
data_collection_interval_sec: 0 # Data Collection Interval (seconds), limits: 0, 10 – 16777215 seconds
outgoing_message_mode: 0 # Outgoing message mode, limits: 0-6
auto_message_length: 8 # Outgoing message length, limits: 1-8 (main sensor version 27 or greater)
user_comment: '' # ASCII up to 32 characters (between quotes)
comm_fail_boot: 0 # Reboot sensor on failed Zigbee Ack / Unassoc. limits: 0, 4 – 254 awake periods

# XBee settings
pan_id: 0x0000000000000000 # PAN (Personal Area Network) ID limits: 0 - 0x000000007fffffff
xbee_security: 'disable' # Security encryption enable (EE). To activate enter ‘enable’
xbee_security_key: 0x0000000000000000 # Security encryption key (KY), limits: 0 - 0xffffffffffffffff
poll_rate: 0 # Poll rate register (PO), set to 0
node_discovery: 1 # Node discover register (NO), set to 1
pan_conflict_threshold: 3 # PAN conflict threshold register (CR), set to 3, limits 1 - 0x3f
device_options: 0 # Device options register (DO), limits 0 or 4, response 0=first, 4=best, ver 29A7 or greater

# Routine control
clear_data_history: 'false' # Select 'true' to clear sensors historical data
obtain_diagnostic_data: 'false' # Obtains waveforms and other data upon gateway boot. To enable select 'true'
diagnostics_upon_wakeup: 1 # Obtains waveforms and other data after wakeup from sleep. Default 1, limits 1-50
program_m3_firmware_file: '' # Update sensor firmware, file named here located in Python manage files.
keep_xbee_awake: 'false' # ‘true’ to keep sensor awake 5 minutes, ‘false’ to disable this function
clear_errors: 'false' # ‘true’ to clear sensors errors
reboot_sensor: 'false' # ‘true’ to reboot sensor. Required after XBee firmware is updated
log_status: 'false' # ‘true’ to output a ‘status_log.txt’ file that records autosend messages
log_diag: 'false' # ‘true’ to output a ‘dia_log.txt’ file that reports sensor settings and driver version
records_to_host: 1 # Data records to host or cloud server upon sensor waking up. Default 1, limits 1-111
daily_wakeup_time: '00:00' # schedule daily sensor wakeup in 24 hour units within quotes. sleep_interval_sec: is disabled

Notes:
1. This example contains just part of the dia.yml file. See Appendix B for additional settings. The '#' character and all that follows on a line are comments and are not processed.
2. Quote marks can be single or double as long as they match.
3. Sensor registers listed in the dia.yml will cause writes to sensor registers only if they are different. Sensor registers are read when gateway boots (and after sensor wakes up).
4. Custom Sensitivity will require custom settings registers to be set, see Section 3.1.11 for these registers (not shown above).
5. XBee registers listed in the dia.yml will write to Xbee registers. Registers left out of dia.yml will not be written.
6. dia controls listed in the dia.yml will execute specific functions when set to do so.
7. If a dia controls are left out or preceded with the '#' symbol, the specific function will not be executed.
3.0 Operating Modes for Gateway and Sensor

3.1 Dia.yml Settings Description - name

The setting “name” in the dia.yml file is used to identify the sensor to the device server. A naming suggestion to best help identify a sensor in multiple tanks is to use the sensor model number followed by the sensor’s MAC address, tank number, serial number or simply the sensor’s full MAC address. Limit: 32 characters, no quotes.

name: M3-150-7A563B40 or M3-150-7A563B40-Tank1 (these are examples)

3.1.2 Dia.yml Settings Description - driver

This is the python driver for the Massa M3 sensor “m3_driver” located in the dia.zip file.

driver: devices.vendors.massa.m3_driver:M3Driver

3.1.3 Dia.yml Settings Description – Xbee extended address

The setting “extended_address” in the dia.yml file identifies the sensor for the driver. Enter the entire MAC address as seen on the label on the sensor or as found in the discovery process. Use lower case for the alpha characters and end with an exclamation point and enclose with quotes. Add additional sensors by separating them by commas.

extended_address: '00:13:a2:00:40:48:3b:4e!'

3.1.4 Dia.yml Settings Description – Xbee device manager

The setting “xbee_device_manager” found in the dia.yml file is used to specify the Xbee manager. Quotes required.

xbee_device_manager: 'xbee_device_manager'

3.1.5 Dia.yml Settings Description – Sleep Interval

The setting “sleep_interval_sec” in the dia.yml file controls the XBee radio sleep period. For Modes 1-3 the sensor will wake up radio to send status information and is independent of the rate to which data is acquired (see data_collection_interval_sec setting). For Modes 5 and 6, the sensor will obtain new range and status information, then wake up the radio and send it to the gateway. The recommended sleep interval settings are 1, 2, 4, 8, or 12 hours. See appendix for battery life estimates with different Sleep Interval settings. No radio communications can occur while sensor is sleeping (red LED off). Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this sensor setting. Limits: 0, 12 – 88474 seconds or 0, 12 – 133120 seconds (FW ver 32 or greater).

sleep_interval_sec: 0 (seconds)

NOTE: If this sleep setting is programmed to a non-zero value, program the outgoing_message_mode to non-zero as well.

3.1.6 Dia.yml Settings Description – Awake Time

The setting “awake_time_sec” in the dia.yml file controls the XBee radio ON time after the sleep timer has expired. The sensor will communicate during this period and will be indicated by the red LED blinking every 2 seconds. Recommended setting is 25 seconds. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this sensor setting. Limits: 12 – 600 seconds.

awake_time_sec: 0 (seconds)

3.1.7 Dia.yml Settings Description – Data Collection Interval

The setting “data_collection_interval_sec” in the dia.yml file controls the rate at which an ultrasonic range measurement and other status information are collected. This setting is ignored when the Outgoing Message Mode register is set to 5 or 6 which uses the Sleep Interval to obtain range and status. For more information, see Section 3.1.8. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this sensor setting. Limits: 0, 10 – 16777215 seconds.

data_collection_interval_sec: 0 (seconds)
3.0 Operating Modes for Gateway and Sensor

3.1.8 Dia.yml Settings Description – Outgoing Status Message Mode

The sensor register control setting “outgoing_message_mode” sets the operation of automated outgoing status message format. See Appendix E for the format of the outgoing message and section 4.0 for an applications example. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this sensor setting. Limits: 0 – 6 (Limits 0 – 4 for sensor main versions to 25)

<table>
<thead>
<tr>
<th>outgoing_message_mode</th>
<th>mode name</th>
<th>Outgoing Status Message Mode Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Manual</td>
<td>Sensor will only send messages upon request during the Awake period</td>
</tr>
<tr>
<td>1</td>
<td>Auto Send 1</td>
<td>Sensor will send a single Command 1 message containing up to 8 blocks of Event Records will wait for the entire programmed Awake Time for any normal protocol requests. There is no demand for any acknowledgement and no retry will be sent.</td>
</tr>
<tr>
<td>2</td>
<td>Auto Send 2</td>
<td>Sensor will send a single Command 1 message containing up to 8 blocks of recorded Event Records will wait for ½ the programmed Awake period then sensor will send a second copy. Awake period will continue in its entirety for any normal protocol requests. There is no demand for any acknowledgement and no retry will be sent.</td>
</tr>
<tr>
<td>3</td>
<td>Auto Send 3</td>
<td>Sensor will send a single Command 1 message containing up to 8 blocks of recorded Event Records will wait for ½ the programmed Awake period for a protocol acknowledgement (Command 200). If acknowledge message is not received within ½ of Awake period, then a second copy will be sent. Awake period will continue in its entirety for any normal protocol requests.</td>
</tr>
<tr>
<td>4</td>
<td>Auto Send 4</td>
<td>Sensor will send a single Acknowledge message indicating that it is awake. Coordinator now can send messages during the Awake period.</td>
</tr>
<tr>
<td>5</td>
<td>Auto Send 5</td>
<td>Sensor will first acquire range and other status information followed by sending a single Command 1 message containing up to 8 blocks of recorded Event Records. The Awake period will continue in its entirety for any normal protocol requests. There is no demand for any acknowledgement and no retry will be sent. The Data Collection Interval Register is disabled.</td>
</tr>
<tr>
<td>6</td>
<td>Auto Send 6</td>
<td>Sensor will first acquire range and other status information followed by sending a single Command 1 message containing up to 8 blocks of recorded Event Records. Sensor will wait for ½ the programmed Awake period then send a second copy. The Awake period will continue in its entirety for any normal protocol requests. There is no demand for any acknowledgement and no retry will be sent. The Data Collection Interval Register is disabled.</td>
</tr>
</tbody>
</table>

3.1.9 Dia.yml Settings Description – # of Records in Outgoing Status Message

The sensor register control setting “auto_message_length” programs the sensor’s the number of records or Event Blocks that are to be contained within a single automated message. See Appendix E for the format of the outgoing message. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this sensor setting. Limits: 1 – 8.

custom_message_length: 8

3.1.10 Dia.yml Settings Description – Ultrasonic Signal Sensitivity Setting

The sensor register control setting “sensitivity” programs the sensor’s thresholds levels and timing for capturing the reflected signal. Most applications should have this set to ‘Normal’. When considering settings other than Normal, set the dia.yml to obtain waveforms for a target placed at the furthest distance, like an empty tank. Review the waveform as seen in Appendix F to determine if this setting requires a setting other than Normal. Poor reflections should go in the direction of a Very High setting while very strong signals and applications with short sensing ranges can consider settings in the Very Low direction. Customized settings is an option on more difficult applications, consult Massa Products for support. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this sensor setting. Select 'normal', 'high', 'very high', 'low', 'very low' or 'custom'. Enclose with quotes.

sensitivity: 'normal'
3.0 Operating Modes for Gateway and Sensor

3.1.10 Dia.yml Settings Description – *Ultrasonic Signal Sensitivity Setting* (continued from previous page)

<table>
<thead>
<tr>
<th>sensitivity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>This setting should be considered if application has a short maximum sensing range.</td>
</tr>
<tr>
<td>Low</td>
<td>This setting should be considered if application has a short maximum sensing range.</td>
</tr>
<tr>
<td>Normal</td>
<td>This is the default setting to be used in most applications.</td>
</tr>
<tr>
<td>High</td>
<td>This setting should be considered if application requires sensing out to maximum specified range for sensor.</td>
</tr>
<tr>
<td>Very High</td>
<td>This setting should be considered if application requires sensing out to maximum specified range for sensor and/or liquid surface is known to foam at the surface.</td>
</tr>
<tr>
<td>Custom</td>
<td>Some applications may have nuisance reflections that may have any options of moving the nuisance or sensor mounting location (such as a ladder in a tank). Obtain diagnostic waveforms in an empty tank and then consult Massa Products for support in setting up a custom setting for your application.</td>
</tr>
</tbody>
</table>

3.1.11.1 Dia.yml Settings Description – *Custom Ultrasonic Signal Sensitivity Settings*

The sensor register control settings listed here allow customization of the thresholds and timing for target detection on the ultrasonic signal for more difficult applications. This could include mounting the sensor in a standpipe in which reflections are present from this type of mounting configuration (see Appendix H). The custom settings listed below are active when the “sensitivity” setting is set to ‘custom’. As described in section 3.1.10, most applications should use the sensitivity setting to 2 (Normal settings). Sensor sensitivity settings, whether normal or customized, can be viewed on the M3 Software after you obtain the sensor’s waveforms. This will allow you to tweak these settings where the goal is to set the threshold levels above the obstruction signal levels. Leaving these control line out of the dia.yml, blank value, or incorrectly typed setting value will not access these sensor settings. Limits: see tables below.

custom_sensitivity_threshold1: 0 # Custom sensitivity threshold #1 (initial or start voltage level)
custom_sensitivity_threshold2: 0 # Custom sensitivity threshold #2 (1st level change at ...threshold2_msec time)
custom_sensitivity_threshold3: 0 # Custom sensitivity threshold #3 (2nd level change at ...threshold3_msec time)
custom_sensitivity_threshold4: 0 # Custom sensitivity threshold #4 (3rd level change at ...threshold4_msec time)
custom_sensitivity_threshold2_msec: 0 # Custom sensitivity switch time #2

custom_sensitivity_threshold3_msec: 0 # Custom sensitivity switch time #3

custom_sensitivity_threshold4_msec: 0 # Custom sensitivity switch time #4

Available Threshold Voltages (for setting ‘custom_sensitivity_thresholdx’)

<table>
<thead>
<tr>
<th>Index</th>
<th>Voltage</th>
<th>Index</th>
<th>Voltage</th>
<th>Index</th>
<th>Voltage</th>
<th>Index</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>off</td>
<td>3</td>
<td>1.00</td>
<td>6</td>
<td>1.03</td>
<td>9</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>4</td>
<td>1.01</td>
<td>7</td>
<td>1.13</td>
<td>10</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>0.84</td>
<td>5</td>
<td>1.00</td>
<td>8</td>
<td>1.22</td>
<td>11</td>
<td>1.38</td>
</tr>
<tr>
<td>3</td>
<td>0.88</td>
<td>6</td>
<td>1.03</td>
<td>9</td>
<td>1.25</td>
<td>12</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>0.94</td>
<td>7</td>
<td>1.13</td>
<td>10</td>
<td>1.31</td>
<td>13</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>8</td>
<td>1.22</td>
<td>11</td>
<td>1.38</td>
<td>14</td>
<td>1.59</td>
</tr>
<tr>
<td>6</td>
<td>1.03</td>
<td>9</td>
<td>1.25</td>
<td>12</td>
<td>1.41</td>
<td>15</td>
<td>1.63</td>
</tr>
<tr>
<td>7</td>
<td>1.13</td>
<td>10</td>
<td>1.31</td>
<td>13</td>
<td>1.50</td>
<td>16</td>
<td>1.69</td>
</tr>
<tr>
<td>8</td>
<td>1.22</td>
<td>11</td>
<td>1.38</td>
<td>14</td>
<td>1.59</td>
<td>17</td>
<td>1.75</td>
</tr>
<tr>
<td>9</td>
<td>1.25</td>
<td>12</td>
<td>1.41</td>
<td>15</td>
<td>1.63</td>
<td>18</td>
<td>1.78</td>
</tr>
<tr>
<td>10</td>
<td>1.31</td>
<td>13</td>
<td>1.50</td>
<td>16</td>
<td>1.69</td>
<td>19</td>
<td>1.88</td>
</tr>
<tr>
<td>11</td>
<td>1.38</td>
<td>14</td>
<td>1.59</td>
<td>17</td>
<td>1.75</td>
<td>20</td>
<td>1.97</td>
</tr>
<tr>
<td>12</td>
<td>1.41</td>
<td>15</td>
<td>1.63</td>
<td>18</td>
<td>1.78</td>
<td>21</td>
<td>2.06</td>
</tr>
<tr>
<td>13</td>
<td>1.50</td>
<td>16</td>
<td>1.69</td>
<td>19</td>
<td>1.88</td>
<td>22</td>
<td>2.16</td>
</tr>
</tbody>
</table>

Threshold Switch Time Limits (for setting ‘custom_sensitivity_thresholdx_msec’)

<table>
<thead>
<tr>
<th>Sensor Model</th>
<th>Threshold Switch Time Limits (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 and 95</td>
<td>0.5465 – 24.8</td>
</tr>
<tr>
<td>50</td>
<td>1.57 – 109</td>
</tr>
</tbody>
</table>
3.0 Operating Modes for Gateway and Sensor

3.1.11.1 Dia.yml Settings Description – Custom Ultrasonic Signal Sensitivity Settings (continued)

**Ultrasonic Sensitivity Settings Register Default Value**

Model M3/150 (Reg 78-81 Index voltage values, see previous page. Reg 82-87 defined as 0.5 uS units)

<table>
<thead>
<tr>
<th>Threshold Name</th>
<th>Reg 78</th>
<th>Reg 79</th>
<th>Reg 80</th>
<th>Reg 81</th>
<th>Reg 82-83 [time(mS)]</th>
<th>Reg 84-85 [time(mS)]</th>
<th>Reg 86-87 [time(mS)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Hi</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2400 [1.2]</td>
<td>3200 [1.6]</td>
<td>4000 [2]</td>
</tr>
<tr>
<td>Hi</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2400 [1.2]</td>
<td>3200 [1.6]</td>
<td>4000 [2]</td>
</tr>
</tbody>
</table>

Model M3/95 (Reg 78-81 Index voltage values, see previous page. Reg 82-87 defined as 0.5 uS units)

<table>
<thead>
<tr>
<th>Threshold Name</th>
<th>Reg 78</th>
<th>Reg 79</th>
<th>Reg 80</th>
<th>Reg 81</th>
<th>Reg 82-83 [time(mS)]</th>
<th>Reg 84-85 [time(mS)]</th>
<th>Reg 86-87 [time(mS)]</th>
</tr>
</thead>
</table>

Model M3/50 (Reg 78-81 Index voltage values, see previous page. Reg 82-87 defined as 2 uS units)

<table>
<thead>
<tr>
<th>Threshold Name</th>
<th>Reg 78</th>
<th>Reg 79</th>
<th>Reg 80</th>
<th>Reg 81</th>
<th>Reg 82-83 [time(mS)]</th>
<th>Reg 84-85 [time(mS)]</th>
<th>Reg 86-87 [time(mS)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>22</td>
<td>17</td>
<td>11</td>
<td>6</td>
<td>16000 [32]</td>
<td>20000 [40]</td>
<td>24000 [48]</td>
</tr>
</tbody>
</table>

**NOTES:**

1) The Massa python code setting `custom_sensitivity_thresholdx` writes to sensor registers 78-81.
2) The formula for setting the distance these threshold switch times will occur can be approximated as: 
   \[
   \text{distance} = x \text{ mS} / 0.147 \text{ mS/in}. 
   \]
   For example, \(4.0\text{mS} / 0.147\text{mS/in} = 27\). See the waveform example below with the first step drop with a the first switch time setting: custom_sensitivity_threshold2_msec: 4.0

Here is an example of a waveform that shows signals from an obstruction between 10” to 18” within a tank. It is preferred that the sensor be mounted with a clear path throughout the entire measurement area, this application had no other mounting options. Here the sensitivity threshold was customized with the setting (red line) well above the obstruction signals. If the obstructions signals are saturated (2.2V), then you will have to move the sensor to another location. Setting the sensitivity threshold levels very high as seen here will require that the reflected signal off the actual level be verified to be above the level set.
3.0 Operating Modes for Gateway and Sensor

3.1.11.2 Dia.yml Settings Description – Custom Low Power Ultrasonic Signal Sensitivity

(Python Ver 1.09 or greater and Sensor FW ver 32.xx or greater)

The sensor register control settings listed here allow customization of the detection thresholds for low power pulses (low power pulses are typically used when tank is nearly full). Sensors which are installed in standpipes 10” tall or less will require custom settings as indicated in the values below and Appendix H. Upgrade sensor firmware before uploading these settings. Note that sensor model 50 includes additional settings to be adjusted. Detection settings for standard power as seen in section 3.1.11.1 will have to be customized. See Appendix H for recommended values.

sensitivitySP: 'custom'

# Model 150 in standpipe
# Select custom to enable all settings below (FW ver 32.xx or greater)
# Select ‘normal’ to disable and set to factory default (direct tank mount)

custom_sensitivity_threshold1_SP: 20
# Custom sensitivity threshold #1 (initial or start voltage level)
custom_sensitivity_threshold2_SP: 9
# Custom sensitivity threshold #2 (1st level change at threshold2_msec time)
custom_sensitivity_threshold3_SP: 1
# Custom sensitivity threshold #3 (2nd level change at threshold3_msec time)
custom_sensitivity_threshold4_SP: 0
# Custom sensitivity threshold #4 (3rd level change at threshold4_msec time)
custom_sensitivity_threshold2_SP_msec: 1.77
# Custom sensitivity switch time #2
custom_sensitivity_threshold3_SP_msec: 2.06
# Custom sensitivity switch time #3
custom_sensitivity_threshold4_SP_msec: 24.0
# Custom sensitivity switch time #4

custom_sensitivity_threshold1_USP: 20
# Custom sensitivity threshold #1 (initial or start voltage level)
custom_sensitivity_threshold2_USP: 9
# Custom sensitivity threshold #2 (1st level change at threshold2_msec time)
custom_sensitivity_threshold3_USP: 1
# Custom sensitivity threshold #3 (2nd level change at threshold3_msec time)
custom_sensitivity_threshold4_USP: 0
# Custom sensitivity threshold #4 (3rd level change at threshold4_msec time)
custom_sensitivity_threshold2_USP_msec: 2.20
# Custom sensitivity switch time #2
custom_sensitivity_threshold3_USP_msec: 2.50
# Custom sensitivity switch time #3

sensitivitySP: 'custom'

# Model 95 in standpipe
# Select custom to enable all settings below (FW ver 32.xx or greater)
# Select ‘normal’ to disable and set to factory default (direct tank mount)

custom_sensitivity_threshold1_SP: 20
# Custom sensitivity threshold #1 (initial or start voltage level)
custom_sensitivity_threshold2_SP: 9
# Custom sensitivity threshold #2 (1st level change at threshold2_msec time)
custom_sensitivity_threshold3_SP: 1
# Custom sensitivity threshold #3 (2nd level change at threshold3_msec time)
custom_sensitivity_threshold4_SP: 0
# Custom sensitivity threshold #4 (3rd level change at threshold4_msec time)
custom_sensitivity_threshold2_SP_msec: 2.20
# Custom sensitivity switch time #2

custom_sensitivity_threshold1_USP: 20
# Custom sensitivity threshold #1 (initial or start voltage level)
custom_sensitivity_threshold2_USP: 9
# Custom sensitivity threshold #2 (1st level change at threshold2_msec time)
custom_sensitivity_threshold3_USP: 1
# Custom sensitivity threshold #3 (2nd level change at threshold3_msec time)
custom_sensitivity_threshold4_USP: 0
# Custom sensitivity threshold #4 (3rd level change at threshold4_msec time)
custom_sensitivity_threshold2_USP_msec: 2.20
# Custom sensitivity switch time #2

sensitivitySP: 'custom'

# Model 50 in standpipe
# Select custom to enable all settings below (FW ver 32.x or greater)
# Select ‘normal’ to disable and set to factory default (direct tank mount)

custom_sensitivity_threshold1_SP: 19
# Custom sensitivity threshold #1 (initial or start voltage level)
custom_sensitivity_threshold2_SP: 10
# Custom sensitivity threshold #2 (1st level change at threshold2_msec time)
custom_sensitivity_threshold3_SP: 1
# Custom sensitivity threshold #3 (2nd level change at threshold3_msec time)
custom_sensitivity_threshold4_SP: 0
# Custom sensitivity threshold #4 (3rd level change at threshold4_msec time)
custom_sensitivity_threshold2_SP_msec: 5.88
# Custom sensitivity switch time #2

custom_sensitivity_threshold1_USP: 20
# Custom sensitivity threshold #1 (initial or start voltage level)
custom_sensitivity_threshold2_USP: 9
# Custom sensitivity threshold #2 (1st level change at threshold2_msec time)
custom_sensitivity_threshold3_USP: 1
# Custom sensitivity threshold #3 (2nd level change at threshold3_msec time)
custom_sensitivity_threshold4_USP: 0
# Custom sensitivity threshold #4 (3rd level change at threshold4_msec time)
custom_sensitivity_threshold2_USP_msec: 2.20
# Custom sensitivity switch time #2

custom_sensitivity_threshold1_USP: 20
# Custom sensitivity threshold #1 (initial or start voltage level)
custom_sensitivity_threshold2_USP: 9
# Custom sensitivity threshold #2 (1st level change at threshold2_msec time)
custom_sensitivity_threshold3_USP: 1
# Custom sensitivity threshold #3 (2nd level change at threshold3_msec time)
custom_sensitivity_threshold4_USP: 0
# Custom sensitivity threshold #4 (3rd level change at threshold4_msec time)
custom_sensitivity_threshold2_USP_msec: 2.20
# Custom sensitivity switch time #2 (15")
custom_sensitivity_threshold3_USP_msec: 4.40
# Custom sensitivity switch time #3 (30")
custom_sensitivity_threshold4_USP_msec: 99.0
# Custom sensitivity switch time #4
3.0 Operating Modes for Gateway and Sensor

3.1.12 Dia.yml Settings Description – User Comment

The sensor register control setting “user_comment” allows descriptive information to be programmed into the sensor. Up to 32 ASCII characters can be placed into the sensor. Leaving this control line out of the dia.yml, blank value, or characters other than ASCII will not access this sensor setting. Limits: up to 32 ASCII characters within quotes. A space or no space between the quote will program 32 spaces into these sensor comment registers. Enclose with quotes.

user_comment: ‘ ’

3.1.13 Dia.yml Settings Description – Zigbee Ack / Unassociated Failure to Boot Sensor

The sensor register control setting “comm_fail_boot” allows for fail safe operation by rebooting sensor in cases of consecutive failed Zigbee Acknowledge message or Unassociated state with gateway that occur on awake cycles. Suggested setting for a reboot is 24 hours and timing is based on the Sleep Setting (sleep_interval_sec). For example, if sleep setting is 4 hours, set this register to 6 for sensor to reboot on 6 consecutive awake cycles that cannot communicate with gateway (for 24 hours). Limits: 0, 4 – 254. Default = 0 (disables this feature).

comm_fail_boot: 0

This sensor setting is strongly recommended to be enabled once the application has been established. This is to avoid any rare communication failures that may require a sensor reboot. This setting functions as a Zigbee watchdog reset.

3.1.14 Dia.yml Settings Description – XBee PAN ID (ID)

The Xbee control setting “pan_id” programs the XBee’s PAN ID register. Sensors are shipped from the factory with its PAN ID set to zero, which by definition, will commission to any gateway (any PAN ID). It is suggested that if more than one gateway and sensor system is used within RF range of each other, that each gateway and associated sensor(s) be programmed with their own unique non-zero PAN ID. Set this value to the same non-zero PAN ID as seen in your Gateway’s XBee PAN ID. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this radio setting. Limits: 0 - 0x0000000000000000

pan_id: 0x0000000000000000

NOTE: Once the sensor’s PAN ID has been changed after rebooting the gateway in the “Configure Sensor Settings” mode, the gateway’s PAN ID will need to be changed with this newly assigned PAN ID so that you can continue to communicate with the sensor. If the Deep Sleep register is zero, the sensor will default to a 1 minute sleep mode and may take up to 1 hour to rejoin the gateway. If the Deep Sleep register is non-zero and the Outgoing Message Mode is 1, 2, 5 or 6, then sensor will rejoin upon the next wake up cycle. See Section 2.3 to change the gateway’s PAN ID.

3.1.15 Dia.yml Settings Description – XBee Encryption Enable (EE)

The Xbee control setting “xbee_security” programs the XBee’s Encryption Enable (EE) register. To activate sensor Xbee security, enter ‘enable’ and enter a security value in the ‘xbee_security_key’ setting (see section 3.1.16). Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this radio setting. The gateway’s Xbee “Encryption Enable (EE)” register will need to be set to ‘1’ as well. Select ‘enable’ or ‘disable’. Enclose with quotes.

xbee_security: 'disable'

3.1.16 Dia.yml Settings Description – XBee Encryption Key (KY)

The Xbee control setting “xbee_security_key” programs the XBee’s Encryption Key (KY) register. This key will be loaded into Xbee if xbee_security: ‘enable’. The gateway’s Xbee “Link encryption key (KY)” register will need to be set to the same value as you have set here. Leaving this control line out of the dia.yml, blank value, or invalid value will not access this radio setting. Limits: 16 byte hexadecimal string.

xbee_security_key: 0x0000000000000000
3.0 Operating Modes for Gateway and Sensor

3.1.17 Dia.yml Settings Description – XBee Poll Rate (PO)

The Xbee control setting “poll_rate” programs the XBees’s Poll Rate (PO) register. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this radio setting. Set this value to 0.

    poll_rate: 0

3.1.18 Dia.yml Settings Description – XBee Node Discovery Register (NO)

The Xbee control setting “node_discovery” programs the XBees’s Node Discovery (PO) register. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this radio setting. Set this value to 1.

    node_discovery: 1

3.1.19 Dia.yml Settings Description – XBee PAN Conflict Threshold Register (CR)

The Xbee control setting “pan_conflict_threshold” programs the XBees’s PAN Conflict Threshold (CR) register. This setting is only available for XBees firmware releases 29A0 and greater. It is important to note that when upgrading XBees firmware from earlier versions than 29A0, that this register be programmed to the default value of 3. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this radio setting. Limits: 1 - 0x03f. Set this value to 3 (default).

    pan_conflict_threshold: 3

3.1.20 Dia.yml Settings Description – XBee Device Options Register (DO) (FW releases 29A7 or greater)

The Xbee control setting “device_options” programs the XBees’s Device Options (DO) register. This setting is only available for XBees firmware releases 29A7 and greater. It is important to note that when upgrading XBees firmware versions prior to 29A7, that this device options register be updated. Setting to 0 will associate to gateway on first response. Setting it to 4 will associate to the gateway with strongest signal (when more than 1 gateway in range). Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not access this radio setting. Limits: 0 or 4. Set this value to 0 (default). After this setting has been updated, execute a sensor reboot. See reboot_sensor setting.

    device_options: 0

3.1.21 Dia.yml Settings Description – Clear Data History Records

The routine control setting “clear_data_history” clears all the sensors historical data records and will reset the Event Number to 1. Enter 'true' to enable this setting. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not perform this function. Select 'true' or 'false'. Enclose with quotes.

    clear_data_history: 'false'

3.1.22 Dia.yml Settings Description – Obtain Diagnostic Data (ultrasonic waveforms and historical records)

The routine control setting “obtain_diagnostic_data” saves ultrasonic diagnostic waveforms and settings to the gateway’s Python Configuration – Python Files section. Enter 'true' and boot gateway to acquire this diagnostic information and when sensor wakes up. See Appendix F for additional information about this feature. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not perform this function. Select 'true' or 'false'. Enclose with single quotes.

    obtain_diagnostic_data: 'false'

NOTE: See section 3.1.31 for setting that will capture diagnostic waveforms more than once for evaluating rare false reporting events.
3.0 Operating Modes for Gateway and Sensor

3.1.23 Dia.yml Settings Description – Program Sensor Firmware

The routine control setting “program_m3_firmware_file” uploads sensor firmware. The firmware will need to be loaded into the Python manage files memory prior to activation. Leaving this control line out of the dia.yml, blank value, or incorrectly typed filename or incorrect model number within filename will not perform this function. Values: firmware bin files, see www.massa.com. Enclose with quotes.

    program_m3_firmware_file: 'M3-150V31-21.bin'  (example)

NOTE: If the sleep setting is not enabled, the gateway will restore the previously stored sleep setting after firmware programming. If a gateway power cycle were to occur during programming, the sleep setting will be set to zero. It is recommended that if this setting is enabled, the 'sleep_interval_sec' also be enabled and value set to your application so it is properly restored.

3.1.24 Dia.yml Settings Description – Sensor XBee Keep Awake command

The routine control setting “keep_xbee_awake” keeps the sensor’s XBee awake for 5 minutes so that XBee firmware can be uploaded. User must first go to Digi’s “XBee Configuration - OTA Firmware Update Setup” UI and load the XBee firmware (ebl file). See section 3.2.6 for XBee firmware upload procedure. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not perform this function. Select 'true' or 'false'. Enclose with quotes. NOTE: If this setting is enabled, then ALL OTHER settings within the yml are disabled for the sensor.

    keep_xbee_awake: 'false'

3.1.25 Dia.yml Settings Description – Clear Sensor Errors

The routine control setting “clear_errors” clears the sensor’s error register. Select 'true' to clear all errors. Error codes are: bit0 = sensor configuration register replaced with default, bit1 = sensor detection fault, bit2 = temperature probe fault, bit3 = brown out fault, and bit4 = power supply low. Select 'true' or 'false'. Enclose with quotes.

    clear_errors: 'false'

3.1.26 Dia.yml Settings Description – Reboot Sensor

The routine control setting “reboot_sensor” restarts the sensor and XBee radio. This setting needs to be enabled Xbee firmware programming and should only the setting enabled. It is not necessary to reboot the sensor with any other sensor setting change. Select 'true' to enable this feature. Select 'true' or 'false'. Enclose with quotes.

    reboot_sensor: 'false'

3.1.27 Dia.yml Settings Description – Status Output Logging of Sensor’s Automated Messages

The routine control setting “log_status” creates a log file stored in the gateway’s Python Configuration – Manage Files section named “status_log.txt” that saves sensor’s automated status messages. If the routine control setting “records_to_host” (see section 3.1.29) is enabled for more than one record, the same number of records that are sent to the cloud will be saved to this file. If setting “records_to_cloud” is disabled, only a single record (latest) will be saved. Use this feature for initial evaluation and disable it once the application has been validated since memory space is limited (as data append to this file). Select ‘true’ to enable this feature. Enclose with quotes.

    log_status: 'false'

Sample output of one data record:

3.1.28 Dia.yml Settings Description – Dia Log to Obtain Sensor Settings

The routine control setting “log_dia” creates a log file stored in the gateway’s Python Configuration – Manage Files section named “dia_log.txt” recording the sensor’s settings. This file will include the python driver version. Select ‘true’ to enable this feature. Enclose with quotes.

    log_dia: 'false'

NOTE: This feature will temporarily set sensor’s sleep setting (sleep_interval_sec) to zero and then restore it to the value previously set in the sensor. It is recommended that if this setting is enabled that you also enable the sleep interval setting.
3.0 Operating Modes for Gateway and Sensor

3.1.29 dia.yml Settings Description – *Number of Data Records Sent to Cloud*

The routine control setting “records_to_host” sends the value of records to the iDigi Cloud (using the idigi_db driver) after sensor wakes up from sleep. This may include past records from previous wake up periods if set higher than 8. Leaving this control line out of the dia.yml, blank value, or incorrectly typed value defaults the setting to 1. Limits: 1 - 111.

```
records_to_host: 1
```

**NOTES:**
- This setting available to Massa M3Driver python version 1.05 or greater.
- Upon awake, the sensor sends up to 8 records of tank level measurements automatically. If more records are required, python code will request sensor for the older records during its Awake cycle.
- Records sent to cloud are oldest first at a rate of approximately 3 second intervals
- Time stamps in records will reflect the time of being sent to cloud.
- To determine the time when the tank level measurement occurred, use the “data_collection_interval_sec” value if outgoing_message_mode is set to 1 or 2 and calculate back.
- To determine the time when the tank level measurement occurred, use the “sleep_interval_sec” value if outgoing_message_mode is set to 5 or 6 and calculate back.
- In the dia.yml, set the setting “file_count” high enough that you will not overwrite older records in the cloud. The records are written to the cloud’s Data Services location and are named “channel_readings” appended with the maximum number based on the “file_count” setting. General rule of thumb for a minimum “file_count” value is at least double the “records_to_cloud” value. Timing of polling the cloud for the records is also a consideration as it must be read before the next time sensor wakes up and writes new data. The channel_readings.xml files in the cloud will be overwritten with new records in a circulatory fashion.

Here is an example of a dia.yml file programming a sensor to wake up every 8 hours and obtain tank level data every 30 minutes. This is a total of 16 records or tank level measurements between sensor radio sleep periods (8 hours * 2 records/hr). Upon awake, the sensor will write to the cloud 16 records. The automated message of 8 records will be processed then the python will request one block of 8 older records to complete the request.

```yaml
Sensor Settings
sleep_interval_sec: 28800 # units in seconds
awake_time_sec: 31 # 20 sec min for most applications
data_collection_interval_sec: 1800 # units in sec (inactive for outgoing msg modes 5 and 6)
outgoing_message_mode: 1 # limit 0-6
auto_message_length: 8 # limit 1-8

Routine control
records_to_host: 16 # Data records to host

loggers: []
presentations:
- driver: presentations.idigi_db.idigi_db:idigi_DB
 name: idigi_db
settings:
 channels: []
 collection: "
 compact_xml: false
 file_count: 32
 filename: channel_readings
 interval: 28800
 sample_threshold: 7
 secure: true
```

Example of records in device cloud after sensor wake up period with dia.yml setting records_to_cloud: 8
3.0 Operating Modes for Gateway and Sensor

3.1.30 dia.yml Settings Description – Scheduled Daily Wakeup Time

The routine control setting “daily_wakeup_time” allows the sensor to be programmed to wake up the Sensor’s XBee radio to a network time. When this setting is enabled, it will override the dia.yml setting “sleep_interval_sec”. Leaving this control line out of the dia.yml, blank value or incorrectly typed will disable the setting. An entered value outside the 24 hour time or in error (for example '04:61') will default the value to 0000 hours (midnight). Format is 24 hour clock in hours and minutes with colon between and enclosed in quotes. Limits: '00:00' – '23:59'.

daily_wakeup_time: 'HH:MM'

NOTES ON OPERATION:

1) This setting is available to python versions 1.09 or higher.
2) If the sensor is rebooted or batteries are replaced, the python will adjust the sensor’s sleep setting to wake up to the programmed wakeup network time.
3) Automatic adjustment of the sensor’s sleep period will continue every wakeup period maintaining a relatively accurate 24 hour period. However it may take several days to achieve calibration.
4) Enabling this setting will default the Outgoing Status Message Mode (outgoing_message_mode) to 1 if it is set to 0 or 4.
5) One option for using this setting is for a single tank level measurement per day just before the scheduled wake up time by programming the Outgoing Status Message Mode to 5 or 6. A second option is to perform multiple tank level measurements within this scheduled daily wakeup time by programming the Outgoing Status Message Mode to 1 or 2 and enabling the Data Collection Interval your desired rate. Make sure that the Records To Host setting is programmed for the total number for tank level measurements in the 24 hour period. This way all the tank level records are sent to the host and/or status log.
6) The gateway’s XBee poll timeout should be adjusted so that the sensor maintains association with this long sleep cycle. An 80 hour timeout is recommended which represents settings of SP=1000 and SN=9600. See Section 2.3 for details.
7) If gateway power cycles or is rebooted with 10 sensors associated, it may take up to 2 days for data to appear.

3.1.31 dia.yml Settings Description – Diagnostic Data Upon Sensor Wakeup

The routine control setting “diagnostics_upon_wakeup” saves ultrasonic diagnostic waveforms and settings to the gateway’s Python Configuration – Python Files section upon sensor wakeup. Outgoing Message Mode must be 1, 2, 3, 5 or 6. When the gateway receives an auto-send message from a sensor after wakeup from sleep, the request will be initiated for diagnostic data. This occurs only once per wakeup period with the fastest rate to obtain waveform data is 5 minutes. Setting limits are 1 – 50, but gateway memory limitations may reduce the number of waveforms that can be saved. Leaving this control line out of the dia.yml, blank value, or incorrectly typed setting value will not perform this function.

diagnostics_upon_wakeup: 1

NOTE: Use this setting when trying to capture a relatively rare occurrence that is causing issue with level measurement. If it is desired to capture diagnostics data upon gateway reboot, enable setting “obtain_diagnostic_data” as well (see section 3.1.22). This setting is available to Python version 1.10 or greater.
3.0 Operating Modes for Gateway and Sensor

3.2 Setting up gateway with multiple dia.yml

There are several ways to set up how the gateway will operate. One method is to use one dia.yml that is edited and reloaded for the different functions (configuring the sensor, obtaining diagnostics data - waveforms, firmware upload or a listening only mode for automated status messages). A second method is to write multiple yml files and give them their own unique name that is enabled in the “Auto-start Settings”. Here it will be described the multiple dia.yml method versus editing the same dia.yml to perform different functions.

3.2.1 General Operation – No Action at Power Up (listen only)
After the sensor has been configured for your application to automatically send its status message upon awake, you should set up a dia.yml so there are no settings that will be written to the sensor or XBee on subsequent power cycles or reboots. The dia.yml file can utilize the comment line indicator ‘#’ for all controls. See example in Appendix B.
NOTE: It is not recommended that you do not enable the “log_dia” setting as it will temporarily write to the sensors sleep settings.

3.2.2 Configure Sensor settings with dia_configure.yml
To configure the sensors settings, edit the dia_configure.yml file for the desired sleep, awake, outgoing message mode, and other settings. Then load it into the python manage files. Check off “dia.py dia_configure.yml” in the Python “Auto-start Settings” UI. When gateway is booted, sensors settings will be updated when they wake up. For validating sensor settings, enable the setting log_dia: ‘true’. The log file named “dia_log.txt” will be created in the python manage files. This file will contain sensor settings as seen in Section 3.1.26. Upon successfully changing the settings, revert back to listening only mode. See section 3.1 for configurable sensor settings. You may configure multiple sensors at a time with the yml file.
3.0 Operating Modes for Gateway and Sensor

3.2.3 Diagnostic Mode, Obtain Waveforms

To obtain diagnostic data that includes ultrasonic waveforms, sensor settings and history buffer up to the last 111 records, set up the command line in the dia.yml as:

```yaml
obtain_diagnostic_data: 'true'
```

This example has its own file named dia_diagnostics.yml and loaded into the Python Files. Enable the Auto-start Settings as shown and boot the gateway. When the sensor wakes up, it will be commanded to obtain waveforms. All waveforms collected will be placed in the Python Configuration - Python Files - Manage Files memory location. You may enable multiple sensors to obtain waveforms in the dia.yml.

NOTE: If the sleep setting is not enabled, the gateway will restore the previously stored sleep setting after diagnostic data is obtained. If a gateway power cycle were to occur while obtaining diagnostic data, the sleep setting will be set to zero. It is recommended that if this 'obtain_diagnostic_data' setting is enabled, the 'sleep_interval_sec' also be enabled and value set to your application so it is properly restored.

Shown here are 2 waveform files created from the M3/150 sensor (file extension ending in the .M3). As indicated in Appendix A, the M3/150 will obtain 2 waveforms while the M3/95 and M3/50 Sensors will obtain 4 waveforms. Download these files to your PC by clicking on the waveform file name which will open up a new window. Then save the waveform by selecting 'File' ‘Save Page As’ function. You may use the M3 Software to review the waveform (see Appendix F) by selecting ‘File’ ‘Recall Sensor from File’ function. The file name created by this diagnostic file contains the sensor’s MAC address followed by the time stamp. Use this same name when saving the file.

After you have obtained the waveforms, you should disable obtain_diagnostic_data setting so subsequent gateway power cycles does not continue to request waveforms (see section 3.2.1). Delete these waveforms from the gateway after you have saved them due to gateway memory limitations.
3.0 Operating Modes for Gateway and Sensor

3.2.4 Sensor Application Firmware Update

First, obtain the sensor’s application firmware from Massa Products web site and upload it as shown here stored in the Python Configuration Manage Files location. Firmware versions less than 29.x will also require loading M3-BootloaderV3.bin into gateway as seen here. Create a new yml file named `dia_m3_firmware_update.yml` and enable the program setting as shown here for model M3/150 sensor:

```
program_m3_firmware_file: 'M3-150V31-21.bin'
```

**NOTE:** Enable only one sensor’s program firmware setting at a time.

**NOTE:** If the sleep setting is not enabled, the gateway will restore the previously stored sleep setting after firmware programming. If a gateway power cycle were to occur during programming, the sleep setting will be set to zero. It is recommended that if this setting is enabled, the 'sleep_interval_sec' also be enabled and value set to your application so it is properly restored.

In the Auto-start Settings menu, check the enable box for “dia.py dia_m3_firmware_update.yml” and reboot the gateway. When the sensor wakes up, it will begin uploading firmware. Upon completion, a dia log file named “dia_log.txt” will be created, or append to an existing one, and report if it has successfully uploaded the firmware.

When successfully programmed, uncheck the Enable box for firmware uploading and return to the listening mode dia.yml (or another function) to prevent the sensor from having its firmware uploaded a second time on any subsequent gateway boots.

3.2.5 Enabling gateway serial port for use with M3 Software application (X4 Gateways only)

The M3 Software application is set up to communicate directly with an X4 Gateway’s serial port. This is an alternate method of accessing sensors settings, utilizing the diagnostic tools, and update firmware locally. Load “massa_gateway_appl.py” then enable it in the Auto-start Settings UI. Reboot the gateway to enable the serial port.

Uncheck “Access the command line interface” in the Serial Services UI and set up for custom serial port setting: Baud Rate=9600, Data Bits=8, Parity=None, Stop Bits=1, and Flow Control=None. The M3 application software can be obtained at www.massa.com.
3.0 Operating Modes for Gateway and Sensor

3.2.6 Sensor XBee Firmware Update

Follow the steps below to program sensors XBee firmware. You should obtain the firmware from either massa.com or from digi.com. Xbee firmware has an “ebl” file extension. NOTE: Update only one Sensor XBee firmware at a time.

As of this writing, programming the XBee firmware requires several steps. It requires the sensor to keep its XBee ON for the entire programming process. This procedure is time sensitive because of the limitations of the radio which can only be instructed to stay awake for 5 minutes. The XBee programming takes about 1 minute.

The gateway must be prepared to allow quick access to enable sensor XBee programming. Follow these steps to successfully program the sensors XBee. Enable setting log_dia and monitor dia_log.txt file for driver status for Step 6 below.

1) Verify that the sensor is awake so that it will be seen in the OTA Firmware Update Status UI. Boot gateway with dia_configure.yml setting sleep_interval_sec: 0. Also enable settings poll_rate: 0 and node_discovery: 1.

2) In the XBee Configuration – OTA Firmware Update Setup UI, check the Enable over the air firmware updates and Stop automatic updates if an update error occurs then click Apply.

3) Browse for the latest XBee firmware (ver 29xx) and click Upload.

4) Go to the OTA Firmware Update Status UI and find sensor’s XBee in the nodes list. If it does not appear on this list, then go to the XBee Devices UI and click on Discover Xbee Devices.

5) Boot gateway with dia_configure.yml setting keep_xbee_awake: 'true'. This will keep the sensor 100% awake for 5 minutes.

6) Monitor the dia_log.txt file in the python Manage Files UI and keep refreshing this log file until you get the “keep_xbee_awake message is acknowledged” message. When you receive this message with “True” indicated, proceed quickly to next step.

7) Immediately go to the OTA Firmware Update Status UI then check the sensor node, select node firmware ebl file, and click Update. Note Status will be indicated as Updating.

8) After 70 seconds, click on the Refresh button to get the indication that the XBee has updated the firmware with a Complete indication. This will validate that the XBee’s firmware has been successfully updated.

9) IMPORTANT! After the sensor’s XBee has been upgraded to ver 29A0 or greater, you must program a new XBee CR register (CR=3). Reboot gateway.

10) Lastly, reboot sensor by setting reboot_sensor = ‘true’. Reboot gateway.

11) Disable sensor_keep_awake, pan_conflict_threshold and reboot_sensor settings after you verify sensor was rebooted.
4.0 Application Setup Example

Application Example - Managing a tank farm

The M3 Sensors are supplied programmed to stay awake and will commission to any gateway (unless gateway security enabled or child table at max). This will be indicated by the sensor’s red LED blinking every 2 seconds. Typical applications will have the sensors programmed for long sleep periods (1hr, 4hrs, 12hrs or more) to maintain battery life (see Appendix A). When programmed, sensors will awake and send status information to the gateway which in turn will send the information to a server (host, cloud or local). Setting up sensors and gateways to have their PAN ID’s programmed to similar non-zero values will maintain that sensors stay associated with an assigned gateway and not join other gateways (when other gateways are in vicinity). Follow the steps below to properly set up your sensor and includes suggestions to obtain diagnostic data when evaluating a new tank for the very first time.

Procedure:

1) DO NOT POWER SENSORS AT THIS TIME.
2) Configure Digi Gateway as indicated by their instructions so you have an Ethernet connection. Use Digi’s Discovery application to get to their Web UI.
3) If there are plans to ever have another gateway in the area, you should change the gateway’s XBee Extended PAN identifier for the XBee network. See page 3.
4) Load all the python files from www.massa.com into your gateway.
5) Load a sample dia.yml (from www.massa.com) on your PC to edit the parameters as follows:
   a) Enter the MAC address of your sensor on the “extended_address” line to the same value as Step 3.
   b) Set other settings as seen in Appendix B
   c) If you have additional sensors, copy settings and edit MAC and NAME parameters. Also edit the PAN ID to the non-zero value the gateway was programmed to.
   d) Load the edited dia.yml back into the manage python files (see page 4)
   e) Power sensor now
   f) Re-boot gateway for pan id to be programmed into sensor. Sensors should stay commissioned going from PAN ID=0 to PANID=your new non-zero value.
   g) If evaluating a new tank, it is recommended to run diagnostics mode to obtain diagnostic data (ultrasonic waveforms) from the sensor. Data should be obtained with the tank empty, ½ full, and full. This data should be archived so that it can be used later to evaluate any problematic tanks. See section 3.2.3 for getting this data.
   h) To view waveforms, use the M3 Software Application, see Appendix F for a waveform description, but for support, contact Massa Products Corporation.
6) If the gateway was close by to the tank during setup and now you are ready to determine a permanent location of the gateway, you should program the sensor to send automated messages relatively fast (every few minutes). These messages will contain the RF signal strength. See Appendix C to observe the radio signal strength and where best to place the gateway as typically it will be more difficult to move the tank. Set up the dia.yml with the following settings:
   a) Obtain the dia.yml from gateway
   b) Set sample_rate_sec: 120
   c) Set sleep_rate_sec: 120
   d) Set awake_time_sec: 31
   e) Set outgoing_message_mode: 2
   f) Load the edited dia.yml back into the Manage Python files UI (see page 4)
   g) Re-boot gateway for settings to be programmed into sensor
4.0 Application Setup Example (continued from previous page)

7) Go to the iDigi Dia web UI. This will be your gateway address followed by /idigi_dia. See figure to the right. Note: you must have the output drivers in the yml file as shown in Appendix B. An alternative way to obtain status messages is to enable the dia setting `log_status: 'true'` and view the status_log.txt file stored in the python files web UI. This setting stores the status information of the latest record of the automated message.

8) The RF signal strength report is named “radio_strength”. If it is Moderate, Strong or Very Strong, then your gateway is mounted in a good location. If a report of “Weak” is reported, then review Appendix C for placement strategies. In some applications, you may have to move the sensor or place a wall router between sensor and gateway.

9) If your application requires security, you may program it as follows:
   a) Obtain the dia.yml from gateway
   b) Set xbee_security_enable: 'true'
   c) Set xbee_security_key: `your value`
   d) Repeat for all sensors in the dia.yml
   e) Boot gateway and wait for all sensors (depending on your current sleep setting) to be programmed with the security enable and keys.
   f) When all sensors have been programmed, update your gateway’s XBee with Encryption enable (EE) = 1 and Link encryption key (KY) to save value you set the sensors. Click apply
   g) You will have to wait until sensor wakes up from its programmed sleep for it to re-associate with the gateway. If your sensor’s sleep interval was programmed for 0, then you will have to wait up to one hour to re-associate. If sensor sleep setting was non-zero, then upon the next wake up cycle will it re-associate.

The gateway can be set up to route the sensor status information received to a server or cloud storage such as iDigi. Hosting sites can obtain and manage your data that could include sending you notification on tank level, alarms, and such to your PC or mobile device. For more information, contact Massa Products or Digi International.
APPENDIX A

Miscellaneous Sensor Information

Specifications

Models
Model M-3/150, M-3/95 and M-3/50

Sensor Beam Angle
10 degrees nominal (all models)

*Ultrasonic Sensing Range
M-3/150: 4” to 7’, M-3/95: 12” to 13’, M-3/50: 14” to 35’

Measurement Resolution
1/128”

Power
3 Lithium Energizer model L91 AA size 1.5V batteries

Operating Temperature
-30°C to +65°C, relative humidity 0 – 95%, non-condensing

Ultrasonic range response time
Approx 150mS to 500mS

Temperature probe
Internal for speed of sound compensation.

LED
Dual colored. RED: XBee radio active indication. GREEN: power up reset (3 flashes) indicator and if application firmware absent or in reprogramming mode.

Commissioning Pushbutton
Pushbutton switch for associating the sensor onto the Digi gateway when necessary or to wake up sensor. Also used to discharge residual power when battery removed to allow restart.

Housing and Sensor Material
PVDF base, cover, and transducer.

Housing Thread
2” NPT

Housing IP Rating
IP67

Data Acquisition Interval
Programmable acquisition rate from 10 sec to 194 days of Event Data (range, temp, status)

Deep-Sleep Timer
Programmable sleep time from 24 seconds to 24 hours and 0 (disables sleep)

Awake Timer
Programmable awake time after Deep-Sleep period from 12 seconds to 600 seconds

Historical Data (Event Data)
Up to 111 events of sensor data saved in memory including target range, temperature, battery voltage, sensor status, and an Event counter.

Ultrasonic Sensitivity Adj.
Programmable

Application Firmware
Reprogrammable over the air

Diagnostics
Ultrasonic Waveform Mode that displays reflected ultrasonic signals for application recording purposes or can be used to diagnose more difficult measurement applications.

Radio
Digi XBeePRO (p/n XBP24-Z7WIT-004), XBeePRO for international use (p/n XBP24-Z7WIT-004).

Radio Range Specifications
XBee: Indoor/Urban Range up to 133 ft. Outdoor RF line-of-sight Range up to 400 ft.
XBeePRO: Indoor/Urban Range up to 300 ft. Outdoor RF line-of-sight Range up to 0.7 miles

Radio Firmware
Reprogrammable over the air

Battery Life
3 years nominal dependent on the sleep rate (see Appendix A)

RoHS
Yes

Weight
1 lb (1.5 lbs for M3/50)

*Note: Minimum sensing range increases as temperature increases, however minimum specified range will be reported regardless. See section 15.2 for more information. Maximum range is target dependent.

Sensor Dimensions

Models M3/150 & M3/95

Model M3/50

![Sensor Dimensions](image-url)
APPENDIX A (continued from previous page)

Miscellaneous Sensor Information

Minimum Sensing Distance over Higher Temperatures
Temperature that exceed values indicated below will pose a slight variance in reporting a linear measurement when target approach the indicated minimum distances. The sensor’s reported range will be the minimum specified distance when the target is at this distance.

<table>
<thead>
<tr>
<th>Model M3/150</th>
<th>Model M3/95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Min Sensing Distance</td>
</tr>
<tr>
<td>&lt; 25°C</td>
<td>4.25”</td>
</tr>
<tr>
<td>25°C to 40°C</td>
<td>4.5”</td>
</tr>
<tr>
<td>40°C to 50°C</td>
<td>4.75”</td>
</tr>
<tr>
<td>50°C to 60°C</td>
<td>5.0”</td>
</tr>
<tr>
<td>≥ +60°C</td>
<td>5.25”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Min Sensing Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>12”</td>
</tr>
</tbody>
</table>

Sensor Factory Default Settings
sleep_interval_sec: 0, awake_time_sec: 31, data_collection_interval_sec: 0, outgoing_message_mode: 0, auto_message_length: 8, sensitivity: 'normal', user_comment: '', comm_fail_boot: 0

Battery Life and Suggested Replacement Voltage
Below are the battery life estimates using Energizer L91 batteries with the data acquisition rate programmed to the same time as the sleep period. The Awake period is typically programmed to 30 seconds.

<table>
<thead>
<tr>
<th>Wake up and report status rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery life at 80% battery efficiency</td>
</tr>
<tr>
<td>3.63 yrs</td>
</tr>
</tbody>
</table>

Status messages will include reporting the battery voltage. It would be a good idea to replace all three batteries when the sensor reports back with voltages below 3.9V. RF range becomes reduced with voltages below 3.2V.

To replace batteries, open cover using slotted screwdriver and remove existing batteries. Press commission button to discharge any residual voltage and then install batteries in polarity shown in battery holders, see photo to right below. Close and secure the cover. For your convenience, the MAC address for the sensor is on the outside cover by the hinge.
LED Behavior
Following is the lookup table for the behavior of the LED:

<table>
<thead>
<tr>
<th>LED Behavior</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>No power, battery voltage too low, or sensor sleeping if powered</td>
</tr>
<tr>
<td>RED quick flash every 2 seconds</td>
<td>Sensor is joined with a ZigBee network, if stays in this mode, then Deep Sleep = 0.</td>
</tr>
<tr>
<td>RED quick flash every 2 seconds</td>
<td>Sensor is joined to a Zigbee network which then goes to sleep per programmed Awake setting and remains OFF for the programmed Deep Sleep setting.</td>
</tr>
<tr>
<td>followed by an extended OFF period</td>
<td></td>
</tr>
<tr>
<td>RED 3 to 50 seconds steady ON</td>
<td>Un-associated state attempting to join ZigBee network.</td>
</tr>
<tr>
<td>RED quick flash once a minute</td>
<td>Sensor is not joined to a Zigbee network and the Deep Sleep Timer = 0. Once joined, sensor will quick flash every 2 seconds. May take up to 1 hour to join.</td>
</tr>
<tr>
<td>RED multiple blinking</td>
<td>Sensor was requested to read, write, obtain waveforms or other requests.</td>
</tr>
<tr>
<td>RED flash every ½ second for 30 seconds</td>
<td>Commission button pressed followed by other behaviors indicated above after 30 sec</td>
</tr>
<tr>
<td>GREEN 3 blinks followed by RED</td>
<td>Sensor was rebooted</td>
</tr>
<tr>
<td>RED 2 Hz flash, GREEN 1 Hz flash</td>
<td>Error: Application firmware not present</td>
</tr>
</tbody>
</table>

Rebooting Sensor Manually
To restart a sleeping sensor, remove battery and then press the commission button for several seconds. Reinstall battery.

XBee Firmware Releases
As of this writing, gateway Xbee firmware is 21A0 and sensor is 29A0. See massa.com for the most up to date releases including sensor firmware.

Sensor XBee radio settings:
Scan Channels (SC) = 0x1ffe
Node Identifier (NI) = Massa M3/xxx (this is specific to sensor model type, 150, 95, 50, 150is, or 95is)
Device Type Identifier (DD) = 0x30201
Node Discovery Option (NO) = 1
Sleep Mode (SM) = 1 (Pin Hibernate)
Poll Rate (PO) = 0
PAN Conflict Threshold (CR) = 3
Device Options (DO) = 0 (for ver 29A7 or greater)
Associated LED Blink Time (LT) = 0x0A

Diagnostic Mode – Sensor Waveforms
This table shows the waveform types that will be created and stored in the Manage Files memory location.

<table>
<thead>
<tr>
<th>Waveform to save</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Model</td>
<td>Transmit cycles</td>
<td>Gain</td>
<td>Transmit cycles</td>
<td>Gain</td>
</tr>
<tr>
<td>M3/150 and M3/150is</td>
<td>1</td>
<td>low</td>
<td>10</td>
<td>high</td>
</tr>
<tr>
<td>M3/95 and M3/95is</td>
<td>1</td>
<td>low</td>
<td>10</td>
<td>low</td>
</tr>
<tr>
<td>M3/50</td>
<td>4</td>
<td>low</td>
<td>1</td>
<td>low</td>
</tr>
</tbody>
</table>
Appendix B

Format for dia.yml

The controls for the gateway operating mode are found in the dia.yml file which is processed by the Massa Python driver (m3_driver.py). See example dia.yml below. It is very important that the syntax be maintained with same spaces and no tabs as shown in this example. It is suggested that you download “Notepad ++” and set it up properly so that any tabs are converted to spaces. The “#” character and all that follows on a line are comments and are not processed. Quote marks can be single or double as long as they match. The driver below “loggers” is used for uploading data to the iDigi Cloud. See massa.com for this file that will include custom sensitivity settings. Appendix H includes custom sensitivity settings example in an application.

devices:
- driver: devices.xbee.xbee_device_manager.xbee_device_manager:XBeDeviceManager
  name: xbe_device_manager
  settings:
    addr_dd_map: {}
    worker_threads: 1
    # Sensor Settings
    # sleep_interval_sec: 0  # Deep Sleep Interval (seconds), limits: 0, 12 – 88474 sec (131320 max ver 32.x)
    # awake_time_sec: 31  # 20 sec min for most applications
    # data_collection_interval_sec: 0  # units in sec (inactive for outgoing message modes 5 and 6)
    # outgoing_message_mode: 0  # limit 0-6
    # auto_message_length: 8  # limit 1-8
    # sensitivity: 'normal'  # 'normal', 'high', 'very high', 'low', 'very low', 'custom'
    # user_comment: ""  # limit 32 ASCII characters
    # comm_fail_boot: 0  # Reboot sensor on failed Zigbee Ack / Unassoc. limits: 0, 4 – 254 awake periods, default = 0
    # Routine control
    # log_dia: 'false'  # 'true' to output a 'dia_log.txt' file that reports sensor settings and driver version
    # log_status: 'false'  # 'true' to output a 'status_log.txt' file that records autosend messages
    # records_to_host: 1  # Data records to host or cloud upon sensor waking up. Default 1, limits 1-111
    # daily_wakeup_time: '12:00'  # schedule daily sensor wake up in 24 hour units within quotes. sleep_interval_sec: is disabled
    # obtain Diagnostic data: 'true'  # 'true' to obtain waveforms or 'false' to disable. Recommended to enable sleep_interval_sec if this setting enabled.
    # diagnostics_upon_wake: 1  # Obtains waveforms and other data after wake up from sleep. Limits 1-50 (python 1.10 or greater)
    # clear_data_history: 'false'  # select 'true' to clear sensor history
    # program_m3_firmware_file: 'M3-150V32-23.bin'  # see massa.com for most up to date sensor FW ver. Recommended to enable sleep_interval_sec if this setting enabled.
    # clear_errors: 'false'  # 'true' to clear sensor errors
    # reboot_sensor: 'false'  # 'true' to reboot sensor. Required after XBee firmware is updated
    # keep_xbee_awake: 'false'  # 'true' to keep sensor awake 5 minutes, 'false' to disable keep sensor awake function
    # XBe settings
    # pan_id: 0x0000000000000000  # limits 0x0000000000000000 to 0x000000007fffffff
    # xbee_security: 'disable'  # XBe Encryption enable EE register 'enabled' or 'disabled'
    # xbee_security_key: 0x0000000000000000  # XBe (Link encryption key) KY register, 16 bytes
    # poll_rate: 0  # XBe PO register, PO=0 for XBe FW 29A0 or greater
    # node_discovery: 1  # XBe NO register, 0 or 1, set this to 1
    # pan_security_threshold: 3  # XBe CR register, limit 1-0x3F, set this to 3
    # device_options: 0  # XBe DO register, limits 0 or 4 or 0 for first find association, 4 for strongest signal association (XBe 29A7 or greater)
    # Main DIA related
    extended_address: '00:13:a2:00:40:48:3b:4e'  #sensor’s MAC address
    xbe_device_manager: 'xbe_device_manager'

# Recommended to enable sleep_interval_sec if this setting is enabled.
# daily_wakeup_time: '12:00'  # schedule daily sensor wake up in 24 hour units within quotes. sleep_interval_sec: is disabled
# obtain Diagnostic data: 'true'  # 'true' to obtain waveforms or 'false' to disable. Recommended to enable sleep_interval_sec if this setting enabled.
# diagnostics_upon_wake: 1  # Obtains waveforms and other data after wake up from sleep. Limits 1-50 (python 1.10 or greater)
# clear_data_history: 'false'  # select 'true' to clear sensor history
# program_m3_firmware_file: 'M3-150V32-23.bin'  # see massa.com for most up to date sensor FW ver. Recommended to enable sleep_interval_sec if this setting enabled.
# clear_errors: 'false'  # 'true' to clear sensor errors
# reboot_sensor: 'false'  # 'true' to reboot sensor. Required after XBee firmware is updated
# keep_xbee_awake: 'false'  # 'true' to keep sensor awake 5 minutes, 'false' to disable keep sensor awake function

# For additional sensors on the gateway, copy the sensor controls as seen in Sensor 1 above and edit the setting “extended_address” with the sensor’s MAC address. Also, assign a new name (-name: ).

loggers: []

presentations:
- driver: presentations.rci.rci_handler:RCIHandler
  name: rci
  settings: {}
- driver: presentations.idigi_db.idigi_db:idigi_DB
  name: idigi_db
  settings:

channels: []

collection: ""

compact_xml: false

file_count: 20  # this setting allocates # of xml files in the cloud, see record_to_cloud setting for proper adjustment.

filename: channel_readings

interval: 3600  # timed interval to send data (in seconds) to cloud device. Set longer than the sensor’s sleep period to avoid repeat data sent especially when using a cellular gateway. Sample_threshold will be the driver to sent automated messages as this setting is a failsafe.

sample_threshold: 7  # sensor forms 7 channels (range, temperature, event #, etc). Set to 7 to send sensor data immediately

secure: true

- driver: presentations.console.console:Console
  name: console0
  settings: {baudrate: 115200, device: /com0, port: 4146, type: tcp}
- driver: presentations.embedded_web.web:Web
  name: web0
  settings: {page: idigi_dia}

services: {}/
APPENDIX C

Digi Gateway & Massa M3 Sensor Placement Strategies

If you had been previously evaluating this kit in your lab environment, it is now time to move the gateway in a permanent location that will give the best possible wireless performance. Typically, the tank will be in a fixed location, so it will be necessary to place the gateway in a location where you will get the most reliable RF performance between sensor and gateway. This may even require the gateway to be placed outdoors in a weatherproof enclosure. To observe the RF signal strength, program the sensor to sleep every minute, awake for 30 seconds, and outgoing message to 1. Open the Web UI idigi_dia under your gateway’s IP address as seen here. The RF signal strength is reported under “radio_strength:”. Verify that both the sensor antenna and gateway antenna are vertical. Moderate reports are acceptable as long as the conditions don’t change as you see in the following pages on placement strategies. Weak reports may require a change in gateway placement or the addition of wall routers. If there is a limitation on where the gateway can be placed, then a Digi Wall Router (repeater) should be used. Ultimately, it is best to keep hardware to a minimum (less wall router).

An alternative way to obtain status messages is to enable the dia setting log_status: 'true' and view the status_log.txt file stored in the python files web UI. This setting stores the status information of the latest record of the automated message.

NOTE: The gateway is rated for -30C to +70C and is not weatherproof. The sensor is watertight when securely tightened.

In this example, a tractor trailer truck is parked between a short storage tank and gateway. Radio signals may not be reliable.

Placing a Digi Wall Router as shown will allow another path around metal structures that could block the radio signal. Simply plug in the wall router and they should associate and be listed on the Xbee Network as a router Node Type. You may also use wall routers to extend the range between gateway and sensors.

NOTE: When using wall routers, it is recommended that you upgrade Massa Python code to version 1.02 or greater. Wall routers are not weatherproof, so they will require to be installed in an enclosure when placed outdoors. If a wall router does not appear to associate with the gateway, then press the button once which is located on the side of the housing. To have it leave a network and rejoin, press the button 4 times.
APPENDIX C (continued)

Digi Gateway & Massa M3 Sensor Placement Strategies

This example shows a much taller tank with a gateway placed high overhead. Here the tractor trailer does not impede the radio signals.

In this scenario, a chain link fence is between sensor and gateway. A metal fence will significantly reduce the radio range. It is better to place the tank with sensor on the other side of the fence or place a router in a location possibly over the fence.

This scenario will also reduce the effective radio range. Place wall routers between the 2 points or place the gateway closer to the storage tanks. The radio signals here can bounce away from the sensor if the roof is metal.

This scenario has the gateway antenna at the same level as the M3 Sensor mounted on metal storage tanks. The RF signal may skip off the closer tanks and poor signal levels may occur at the further tanks. Raising the gateway’s antenna will improve the signal to the further tanks.
APPENDIX C (continued)

Digi Gateway & Massa M3 Sensor Placement Strategies

Implementing Digi’s XBee Wall Router to increase RF range

If the sensor is reporting a “Weak” radio signal report (or not associating with gateway) and the gateway or sensor cannot be relocated, then you should consider the use of a Digi Wall Router. This will increase reliability of the RF link. Listed below is an example of a weak RF signal strength report from the status_log.txt.

Sensor 00:13:a2:00:40:8d:12:35!: Dist=27.7” Temp=18.1C Batt=5.3V UltrasonicStrength=75% RadioSignal=Weak Event=3 2013-05-28 08:08:40

The XBee Devices UI indicates the presence of both the gateway and sensor.

Place a Digi XBee Wall Router in between the gateway and sensor making the best effort placing it in the line of site of both devices. The Wall Router’s green LED should be blinking.

Here is the XBee Device UI that shows the addition of the Wall Router to the network (Node Type = router). If the XBee Wall Router does not appear on this list, then press its pushbutton 4 times to have it associate with the gateway. The pushbutton is located on its side.

At this point, you should reboot the sensor to have it establish a link to the router. If this link does occur (and not the link directly to the gateway) then you may see the Radio Signal report improve. Here is an example of what a report could look like after a router was added.

Sensor 00:13:a2:00:40:8d:12:35!: Dist=27.7” Temp=18.1C Batt=5.3V UltrasonicStrength=75% RadioSignal=VeryStrong Event=9 2013-05-28 08:11:11

Note: You may add additional XBee routers in line to increase RF range even further. Additional XBee routers will appear on the XBee device list as additional wall routers. If the Digi XBee Wall Router is to be placed outdoors, a weatherproof housing will be required.
APPENDIX D

Fresnel zone and effects on it (see Digi web site for more info)

It makes sense that obstructions between a transmitter and receiver will reduce the communication range. In order to obtain the absolute maximum communication range possible, a radio modem system must be installed such that true RF Line-of-Sight (LOS) conditions exist between the transmitting and receiving antennas.

RF LOS is different that visual LOS. Visual LOS is present when one can stand next one antenna and use binoculars to view the other antenna. RF LOS requires not only a visual sight line between the antennas but it also requires that a football shaped area between the two antennas be free of obstructions.

This football shaped area is called the Fresnel Zone (pronounced fernel zone). The Fresnel zone is an area that is larger in diameter at the center and smaller in diameter at either end. Also, the greater the distance between the antennas, the larger the diameter of the Fresnel zone in the center.

Any obstructions that enter into the Fresnel zone will reduce the communication range; including buildings, vegetation, the ground, etc. As the antennas get further apart and the diameter of the Fresnel zone increases, the ground can begin to obstruct the Fresnel zone. In order to keep the entire Fresnel zone free of obstructions it is necessary to raise the antennas. To keep the Fresnel zone off the ground the heights of the antennas added together must total more than the diameter of the Fresnel zone at the specific distance.

The diameter of the Fresnel zone is a function of the frequency and the distance between the antennas. For reference here is a table to use as a guideline:

<table>
<thead>
<tr>
<th>Distance between antennas</th>
<th>Fresnel zone diameter</th>
<th>Freespace loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 ft (300 m)</td>
<td>11 ft (3.4 m)</td>
<td>90</td>
</tr>
<tr>
<td>1 Mile (1.6 km)</td>
<td>21 ft (6.4 m)</td>
<td>104</td>
</tr>
</tbody>
</table>

Since the RF signal is omni-directional, it can reflect signals from objects back to the sensor and gateway. This overhead view shows the RF signal deflecting off of an object that may reduce the signal of the direct RF path if out of phase. This example could be the source of problems of obtaining good signal strength between the 2 devices and is why it is important to perform site testing where the gateway and sensor it to be located. Most cases the reflected signal would be low in sensitivity and may not be an issue.
APPENDIX E

Outgoing Auto-Message Message Format
This is the automated outgoing message format when the sensor wakes up from Deep Sleep. The auto_message_length setting will be the same number indicated in the “EventsToRetrieve” byte. This setting allows you to reduce the size of this message by reducing the amount of records for such reasons as limiting the size for cell plan costs.

<Destination ID><Sender ID><Message Length><Command><Addr Ptr><EventsToRetrieve><Event Record (1)><Event Record (n)><Checksum>

<table>
<thead>
<tr>
<th>Host ID</th>
<th>Sensor ID</th>
<th>total # of bytes</th>
<th>Record Pointer</th>
<th># of event blocks</th>
<th>oldest record</th>
<th>newest record</th>
<th>checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>default=251</td>
<td>default=1</td>
<td>of this message</td>
<td>1</td>
<td>1 to 111</td>
<td>1 to 8</td>
<td>(8 bytes)</td>
<td>(8 bytes)</td>
</tr>
</tbody>
</table>

Event Record (n) block defined (8 bytes):

<EventLSB><EventMSB><Status1><Status2><RangeLSB><RangeMSB><TemperatureReading><BatteryReading>

<table>
<thead>
<tr>
<th>Event LSB</th>
<th>Event MSB</th>
<th>Status1</th>
<th>Status2</th>
<th>Range LSB</th>
<th>Range MSB</th>
<th>Temperature Reading</th>
<th>Battery Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;EventLSB</td>
<td>&lt;Event MSB</td>
<td>&lt;Status1</td>
<td>&lt;Status2</td>
<td>&lt;Range LSB</td>
<td>&lt;Range MSB</td>
<td>&lt;Temperature Reading</td>
<td>&lt;Battery Reading</td>
</tr>
</tbody>
</table>

<Status 1>: This status byte is parsed as;
- <bit7> Sensor Error; 0=OK, 1=Fault (read Configuration Register 65)
- <bit6> <bit5> undefined, factory only
- <bit4> Ultrasonic Gain Control (short); 0=Low, 1=Hi
- <bit3><bit2> Radio Signal Strength (of Last Reception); 00=weak, 01=moderate, 10=strong, 11=very strong
- <bit1><bit0> Ultrasonic Signal Target Strength; 00=<25%, 01=50%, 10=75%, 11=100%

<Status 2>: This status byte is parsed as;
- <bit7><bit6><bit5> Ultrasonic Sensitivity Settings; 000=Very Low, 001=Low, 010=Normal (default), 011=Normal-Hi, 100=Hi, 101=Very Hi, 110=Custom
- <bit4><bit3> Ultrasonic Gain Control (long); 0=Low, 1=Hi
- <bit2> Temperature Probe; 0=Internal (default), 1=User Programmed value
- <bit1> Min Distance Processing; 0=Disabled, 1=Enabled (default)
- <bit0> Range Bytes Resolution; 0=÷128 (models M3/150 & M3/95), 1=÷64 (model M3/50)

<Range LS B><Range MS B>: Ultrasonic Range (in inches). Resolution for model M3/150 and M3/95: Range MS B:Range LSB ÷ 128. Model M3/50: Range MS B:Range LSB ÷ 64. Status 2 <bit 0> indicates resolution. No target detected (no echo) is indicated with Range MS B:Range LSB=0. Range MS B = 255 indicates range not acquired (not available in data history buffer).

Temperature (°C) = 0.587085 * <Temperature Reading> - 50

Battery Voltage (volts) = ( (<Battery Reading>-14) / 40

*Reminder: Resolution of the Range LSB and Range MS B is defined by Status 2 bit 0.*
APPENDIX F

M3 Application Software – Understanding an Ultrasonic Waveform

This very important tool will allow diagnosing more difficult applications and also allows recording the tanks ultrasonic profile for archival purposes.

When the dia.yml configures obtain_diagnostic_data_enable: 'false', waveforms and other data are stored in the gateway. Save the file from the gateway to your PC and use the M3 Application software (see www.massa.com) to recall each waveform. See plot below of a typical waveform.

A waveform can be broken down in 3 sections. The 1st pulse on the left of the waveform is from the sensor ping (or ultrasonic transmit) that emits the sound wave. It is then followed by a reflection (next pulse to the right of the ping pulse) off the surface and finally followed by other multiple reflections that may or may not be present. The sensor is designed to ignore the ping pulse and capture the 1st reflected signal over threshold to report the range to the surface (the red line in the waveform represents the signal capture threshold level). Other multiple reflections are ignored. Ideally the signal between the transmit pulse at the beginning of the waveform and the 1st reflected signal of the actual surface level needs to be clear of unwanted reflections. Unwanted reflections could be caused by items such as ladders in a tank, the sensor being mounted right next to the edge of the tank or the sensor not being level and pointing towards the edge of the tank or other items. In more difficult applications, the Sensor Sensitivity adjustments could provide a solution, but consult with Massa Products for support (record and provide all waveforms as indicated in Table 1 with an empty tank). As you can see in the waveform below, the 1st reflection is at 60” and it is clear from the ping pulse to this reflection (good!). An example of a problematic situation is for a pulse being present at 40” which could represent an item such as pipe in the direct path. Sound will travel around objects such as pipes for the bigger reflection such as the liquid surface.

If it is observed that a sensor model does not have a reliable reflection (1.25V peak at least) in an empty tank (or lowest process level) while operating with the highest power mode, then it may be necessary to select a lower frequency model sensor. Consult with Massa Products for more information.

NOTE: Model M3/150 has 2 waveforms as seen in Appendix A, all other models have 4 waveforms.

NOTE: The iDigi Device Integration Application (Dia) software provides a rich python library for addressing remote data acquisition, control, and presentation of device data on ConnectPort X gateways. Dia collects data from any device which can communicate with a Digi gateway, over any gateway interface and re-presents this data to upstream applications in a fully customizable approach. Digi recommends that you start your device networking application with Dia.
APPENDIX G

Checklist for Reliable Sensor and Gateway Operation

□ Sensor XBee firmware version 29A0, PO=0, CR=3. Scan channel (SC) set to 0x1ffe.
  a) PAN ID = 0 for fixed sensor applications that don’t ever expect another gateway in the vicinity or for roving sensors that need to associate with any gateway.
  b) PAN ID = non-zero for fixed sensor applications that do expect, or have another gateway in the vicinity, in which the sensor is associated is to a specific gateway.

□ Gateway XBee firmware version 21A0, poll rate setting dependent on application
  a) Fixed sensor placement such as tank farm – SN=2880, SP=1000 (24 hours). If sensor set up to sleep 12 hours or more, set for at least 48 hour period or SN=5760, SP=1000.
  b) Roving sensors that don’t need to stay associated to gateway – SN=3, SP=1000 (30 seconds)
  c) Scan channel (SC) set to 0x1ffe
  d) PAN ID = 0 will randomly assign an operating PAN ID. It should not be used if more than one gateway is in the vicinity in fixed sensor applications.
  e) PAN ID = non-zero for fixed sensor applications that do expect, or have another gateway in the vicinity, in which the sensor is associated is to a specific gateway.

□ Gateway firmware version 2.14.1.6 (Version 82001536_K 10/18/2011) or greater.

□ Sensor settings:
  a) Sleep setting must be non-zero value to output automated message upon awake
  b) Awake Timer is recommended for 31 seconds initially for setup and evaluating period. Minimum 20 seconds once application has been validated if desired.
  c) Data Collection Interval set to your application. This is disabled for Outgoing Message Modes 5 & 6
  d) Outgoing Message Mode – 1 and 5 will send 1 message upon awake. Use Mode 2 or 6 so that 2 messages will be sent upon awake in situations where a message is lost due to a RF collision or other poor signal. Use Mode 5 or 6 to synchronize acquiring tank level and sending the automated message. For cellular gateways that want to minimize data usage, use Mode 1 or Mode 5.
  e) Auto message length set your application. Default is 8.
  f) Ultrasonic sensitivity set to normal. Consult factory for other settings in more difficult sensing applications.

□ Application program “Notepad ++” is a very helpful in maintaining syntax for your dia.yml such as spaces and tabs are set properly. Make sure preferences are enabled for Python. Obtain this program from the web.

□ dia.zip tested using DIA version 1.4.14

□ dia.yml “presentations” settings are optimized so that data is sent to the cloud or cell network when sensor wakes up and sends status information. Adjust settings to interval:3600 (seconds) and sample_threshold:7. Sent interval longer than your sleep setting to avoid repeat of data sent to cloud as the sample_threshold is the trigger that sends the sensor information immediately to the cloud device.

□ Use Massa python driver version 1.02 or greater. To verify driver number, see log file dia_log.txt when enabled.

□ Disable sleep register (with #sleep_interval_sec) in the dia.yml after you have previously set this register for the application (non-zero). This will guarantee that the sensor will remain programmed to send automated messages when using python version 1.02 or greater.
APPENDIX H

Customized Detection Settings When M3 Sensor Mounted in a Standpipe

Settings for all sensor models will require customized settings due to reflections inside a standpipe. Issues would arise when incorrect full reports are indicated either continuously or intermittently. To resolve this issue, sensor must be programmed with firmware version 32.xx or greater and have its sensitivity settings customized to ignore the reflections that occur in a standpipe.

It is worth noting that mounting a sensor in a standpipe will inherent inaccuracies in measurement if the tank located outdoors when the sun is shining on it. This is due to the air column in the standpipe typically being warmer that the rest of the tank where the temperature is being measured for the sensor’s speed of sound calibration. To reduce error in range reporting, but only if your application requires a single report per day, enable the daily_wakeup_time setting and set it to the evening hours when the temperature has stabilized, for example at 3am.

Here are the adjustments that will be required to be enabled in the dia.yml for each model (Python ver 1.09 or greater):

```yaml
long ping standpipe settings for model /150 (subject to individual testing)
sensitivity: 'custom'
custom_sensitivity_threshold1: 21 # use sensitivity index values
custom_sensitivity_threshold2: 16 # use sensitivity index values
custom_sensitivity_threshold3: 9 # use sensitivity index values
custom_sensitivity_threshold4: 1 # use sensitivity index values
custom_sensitivity_threshold2_msec: 4.12 # 28"
custom_sensitivity_threshold3_msec: 5.15 # 35"
custom_sensitivity_threshold4_msec: 7.35 # 50"

Settings listed below are for short ping (independent of long ping settings)
sensitivitySP: 'custom'
custom_sensitivity_threshold1_SP: 20 # use sensitivity index values
custom_sensitivity_threshold2_SP: 9 # use sensitivity index values
custom_sensitivity_threshold3_SP: 1 # use sensitivity index values
custom_sensitivity_threshold4_SP: 0 # use sensitivity index values (r24) off
custom_sensitivity_threshold2_SP_msec: 1.77 # 12"
custom_sensitivity_threshold3_SP_msec: 2.06 # 14"
custom_sensitivity_threshold4_SP_msec: 24.00 # default

long ping standpipe settings for model /95 (subject to individual testing)
sensitivity: 'custom'
custom_sensitivity_threshold1: 18 # use sensitivity index values
custom_sensitivity_threshold2: 13 # use sensitivity index values
custom_sensitivity_threshold3: 5 # use sensitivity index values
custom_sensitivity_threshold4: 1 # use sensitivity index values
custom_sensitivity_threshold2_msec: 5.88 # 40"
custom_sensitivity_threshold3_msec: 8.82 # 60"
custom_sensitivity_threshold4_msec: 11.76 # 80"

Settings listed below are for short ping (independent of long ping settings)
sensitivitySP: 'custom'
custom_sensitivity_threshold1_SP: 19 # use sensitivity index values
custom_sensitivity_threshold2_SP: 9 # use sensitivity index values
custom_sensitivity_threshold3_SP: 1 # use sensitivity index values
custom_sensitivity_threshold4_SP: 0 # use sensitivity index values (r24) off
custom_sensitivity_threshold2_SP_msec: 2.20 # 15"
custom_sensitivity_threshold3_SP_msec: 2.94 # 20"
custom_sensitivity_threshold4_SP_msec: 24.00 # dflt
```
APPENDIX H

Customized Detection Settings When M3 Sensor Mounted in a Standpipe (continued)

#long ping standpipe settings for model /50 (subject to individual testing)

    sensitivity: 'custom'  # select 'custom' and enable all settings below
    custom_sensitivity_threshold1: 20  # use sensitivity index values
    custom_sensitivity_threshold2: 9   # use sensitivity index values
    custom_sensitivity_threshold3: 5   # use sensitivity index values
    custom_sensitivity_threshold4: 2   # use sensitivity index values
    custom_sensitivity_threshold2_msec: 18  # 122"
    custom_sensitivity_threshold3_msec: 26  # 177"
    custom_sensitivity_threshold4_msec: 34  # 231"

# Settings listed below are for short ping (independent of long ping settings)

    sensitivitySP: 'custom'  # select 'custom' and enable all settings below (or ‘normal’ for fac default)
    custom_sensitivity_threshold1_SP: 19  # use sensitivity index values
    custom_sensitivity_threshold2_SP: 10  # use sensitivity index values
    custom_sensitivity_threshold3_SP: 1   # use sensitivity index values
    custom_sensitivity_threshold4_SP: 0   # use sensitivity index values
    custom_sensitivity_threshold2_SP_msec: 5.88  # 40"
    custom_sensitivity_threshold3_SP_msec: 8.82  # 60"
    custom_sensitivity_threshold4_SP_msec: 99.00  # dflt

#short ping customized settings for 4-cycle ultra low ping (enables reg10 = 1)

    custom_sensitivity_threshold1_USP: 19  #use sensitivity index values
    custom_sensitivity_threshold2_USP: 10  #use sensitivity index values
    custom_sensitivity_threshold3_USP: 1   #use sensitivity index values
    custom_sensitivity_threshold4_USP: 0   #use sensitivity index values
    custom_sensitivity_threshold2_USP_msec: 2.20  # 15"
    custom_sensitivity_threshold3_USP_msec: 4.40  # 30"
    custom_sensitivity_threshold4_USP_msec: 99.0  # dflt
# APPENDIX I
## Troubleshooting Guide

<table>
<thead>
<tr>
<th>Issue</th>
<th>Condition</th>
<th>Solution or work around</th>
</tr>
</thead>
</table>
| Missing data, sensor lost association. | - Gateway power cycle could lose association.  
- Gateway Xbee version less than version 2.1A0.  
- Poor RF link  
- Xbee firmware was updated | - Upgrade sensor firmware to at least version 3.1 which will detect unassociated state and attempt to rejoin gateway.  
- Upgrade gateway Xbee firmware to version 2.1A0.  
- Upgrade python to version 1.02. Disable sensor’s sleep setting in dia.yml only after you have previously set all settings for application.  
- Consider the use of a Xbee Wall Router (see Appendix C). Otherwise, relocate gateway.  
- Sensor antenna not upright  
- Poor sensor/gateway placement  
- Low sensor battery voltage  
- For application reliability in marginal RF conditions, enable the `comm_fail_boot` setting. |
| Sensors do not rejoin gateway upon awake when it was previously joined | Gateway power cycle and Xbee “Number of remaining children” register full (NC=0) | Upgrade Massa Python driver 0.53 or greater which will perform a Xbee network reset upon gateway boot when NC=10. Sensor firmware must be ver 3.1.x or greater which will allow the sensor immediately rejoin the gateway upon its next awake cycle. |
| Sensor is not outputting automated messages | - Sensor’s sleep setting is zero  
- The outgoing message mode is not set to 1, 2, 5 or 6. | - Sleep setting must be non-zero otherwise sensor is awake. Automated messages are only sent when the sensor wakes up from sleep.  
- Verify the outgoing message setting is set to 1, 2, 5 or 6. |
| Cannot upload sensor firmware | Gateway XBeve version 2.1A7 and encryption is enabled | Disable encryption (EE=0) in both sensor and gateway’s Xbee. If encryption required (EE=1), then upload gateway Xbee version 2.1A0. |
| Sensor appears joined with RED LED flashing every 2 seconds (when awake) but not seen on XBeve network. Case #1 | Sensor associated with another gateway when several gateways operating in same vicinity (with sensor PAN ID=0) | Use non-zero PAN ID’s for gateway and sensor. |
| Sensor appears joined with RED LED flashing every 2 seconds (when awake) but not seen on XBeve network. Case #2 | Gateway encryption enabled with sensor encryption disabled. | Sensor will be allowed to associate with the gateway but will not be seen or enabled on the XBeve network. |
| Driver not outputting data or changing sensor settings | Using dia.yml controls | Check syntax and spacing for sensor settings in the dia.yml. Also check MAC address is correctly entered. |
| Sensor does not join gateway | RED LED is on solid and does not blink. | Gateway out of range, poor RF signal strength, Gateway XBeve child table full (NC=0), gateway/sensor PAN ID don’t match with sensor non-zero PAN, gateway/sensor’s encryption key doesn’t match, gateway SC register 0x3ff (set to 0x1ffe). |
| Sensor has lost association after a time period of successfully being joined and reporting messages | No reported messages, sensor LED blink not normal blink every 2 seconds when awake. | Unknown rare event. It is strongly suggested to enable the setting `comm_fail_boot` (see section 3.1.13) for sensors that are placed in remote locations. |
| Sensor has to rejoin gateway every awake cycle | RED LED is on solid then blinks upon awake. This indicates gateway has dropped sensor from its XBeve network. | Set gateway’s SN/SP registers timing at least 3 times longer than the sensor’s sleep register. Some applications will require gateway to intentionally drop sensors, so this will be normal LED operation as indicated in the “Condition” column. |
| Sensor blinking red/green. | No application firmware | Load gateway with M3 firmware (sensor model specific) and enable sensor firmware upload setting in dia.yml. |
| M3/50 Sensor range reporting ½ the distance | Outgoing message range that is reported to server or cloud | Status2 bit 0 indicated range resolution. See Appendix E. |
| Cellular data usage high | - dia.yml presentation settings set incorrectly  
- sensor sleep setting too short | - adjust dia.yml settings `interval=3600` and `sample_threshold=7`  
- set sleep settings to 1 hour or more.  
- review all gateway mobile and other settings to minimize usage |
## APPENDIX I

### Troubleshooting Guide (continued from previous page)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Condition</th>
<th>Solution or work around</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN ID of sensor unknown to associate it with a gateway</td>
<td>- user accidentally programmed incorrect value or other reason for unknown PAN ID.</td>
<td>Press sensor’s commission button 4 times quickly to reset XBee to factory defaults (with PAN ID=0). Then power cycle sensor. You must restore XBee registers SC=0x1ffe &amp; LT=10 after power cycle.</td>
</tr>
<tr>
<td>Python stopped running (as seen in Management-Connections)</td>
<td>- verify syntax in dia.yml - gateway rebooted (warm boot) with wall router present</td>
<td>- Check proper spacing &amp; tabs, spelling, etc in dia.yml - Intermittent operation may occur when using the Administration-Reboot button with a wall router present. So simply reboot again. No known issues with a gateway power cycle.</td>
</tr>
<tr>
<td>Incorrect measurement (full)</td>
<td>- reporting full when not</td>
<td>- Check for obstructions or if sensor is mounted in standpipe. Requires customized sensitivity adjustment. See section 3.1.11. Obtain waveforms for analysis. - Consult Massa Products for support with waveforms.</td>
</tr>
<tr>
<td>Incorrect measurement (empty)</td>
<td>- reporting empty when not</td>
<td>- Verify sensor is mounted vertically (less than a few degrees off angle) - Check for obstructions. Obtain waveforms for analysis and verify Sensitivity setting set so that detection occurs at furthest measurement level. If detection surface foaming with sensitivity set to highest levels (most sensitive), application may require lower frequency model sensor. - Consult Massa Products for support with waveforms.</td>
</tr>
<tr>
<td>Incorrect measurement (midpoint)</td>
<td>- reporting a measurement that is closer than actual</td>
<td>- Obstruction in tank is detected when level falls below it. Sensors mounted closer to tank wall have a higher probability for false detection if such obstructions are present such as an internal ladder or intake pipe. Either move sensor to a new location or customize sensitivity setting so the threshold line is above the obstructed signal if possible (see section 3.1.11). - Consult Massa Products for support with waveforms.</td>
</tr>
<tr>
<td>Incorrect measurement (overall)</td>
<td>vapors that have a different speed of sound from air</td>
<td>- Some products such as unleaded gasoline produce vapors that yield a slower speed of sound. Since the sensor bases its calculation for range detection to air, the user application will require multiplying a factor of the percentage of the sensor’s reported range to obtain the proper distance to the actual level. One option is to scale the zero (empty) and span (full) distances to this vapor. - Consult Massa Products for support with waveforms.</td>
</tr>
</tbody>
</table>